

CHAPTER 13

Electrochemical Energy Storage: Unlocking the Power of Advanced Materials

Tanushree Manohar Sukul

Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007 Maharashtra, India

Corresponding author Email: sukul.tanushree@gmail.com

Received: 05 September 2025; Accepted: 24 September 2025; Available online: 26 September 2025

Abstract: The global need for effective, high-performance, and sustainable energy storage systems has resulted in substantial advances in materials chemistry, particularly for electrochemical energy storage technologies. This chapter provides the detailed review of the fundamentals governing electrochemical energy storage, followed by an in-depth exploration of advanced materials used in devices such as batteries and supercapacitors. The study prioritizes the role of nanostructured, two-dimensional, hybrid, and bimetallic materials in enhancing energy density, power output, and long-term stability. Strategies for material design, synthesis, and performance optimization are discussed alongside the challenges and forthcoming development in the field. Applications covering small-scale electronics to utility-scale systems are also addressed, highlighting the real-world impact of materials innovations in electrochemical energy storage.

This work is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/). This allows re-distribution and re-use of a licensed work on the condition that the author is appropriately credited and the original work is properly cited.

Materials Science: Advances in Synthesis, Characterization and Applications (Vol. 1) - Digambar M. Sapkal, Harshal M. Bachhav, Gaurav Mahadev Lohar, Sanjay P. Khairnar (Eds.)

ISBN: 978-93-95369-55-8 (paperback) 978-93-95369-46-6 (electronic) | © 2025 Advent Publishing.

<https://doi.org/10.5281/zenodo.17204958>

Graphical Abstract

Innovative materials for electrochemical energy storage enable efficient utilization of renewable sources, powering applications from electric vehicles and smart homes to supercapacitors and portable devices.

Keywords: Energy storage, Supercapacitors, Batteries, Portable Electronics, Electric Vehicles

1. Introduction

Energy storage serves as one of the defining technological challenges of the 21st century.¹ The exhaustion of fossil fuels, together with the environmental consequences of their combustion, has intensified the global push toward sustainable energy sources like wind and solar.² Nevertheless, the naturally fluctuating and discontinuous nature of these resources demands efficient, large-scale, and economical energy storage solutions to ensure continuous and stable power supply.³

Electrochemical energy storage technologies such as batteries, supercapacitors, and related systems are uniquely positioned to address this challenge.⁴ They enable direct conversion of electrical energy into chemical energy and back again with high efficiency and without the greenhouse gas emissions associated with conventional heat engines.⁵ Of these, lithium-ion batteries (LIBs) have become the dominant choice for portable devices and electric vehicles, while emerging systems such as lithium–sulfur and lithium–oxygen batteries offer the potential for even higher specific energies. In contrast, supercapacitors deliver outstanding power density and extended durability, making them well-suited for applications requiring fast charging and discharging.^{6,7}

The efficiency, reliability, and economic viability of these systems are intimately tied to the chemistry and structure of the materials that compose them. Over the past two decades, innovations in materials chemistry particularly nanostructuring, surface functionalization, and composite engineering have transformed the capabilities of electrochemical storage devices.⁸ Nanostructured materials can shorten ion and electron transport paths, increase active surface area, and accommodate mechanical strain during cycling, leading to improvements in energy density, power density, and durability.⁹

This chapter seeks to present an integrated view of advanced materials chemistry for electrochemical energy storage. We begin by reviewing the fundamental principles that govern electrochemical energy storage, followed by a detailed discussion of material classes and design strategies that have enabled state-of-the-art performance. We also address the practical challenges such as material degradation, scalability, and cost that must be overcome to translate laboratory advances into commercial success. Finally, we explore future directions, highlighting how breakthroughs in materials chemistry can propel the advancement of future sustainable, high-performance energy storage technologies.

2. Fundamentals of Electrochemical Energy Storage

Electrochemical storage devices function through the reversible transformation of electrical energy into chemical energy and back again through redox reactions.¹⁰ These systems are composed of three essential components: an anode, a cathode, and an electrolyte. While discharging, oxidation occurs at anode, delivering electrons to the circuit while transporting ions into the electrolyte, while reduction occurs at the cathode, consuming electrons and ions. Charging reverses these processes, restoring the electrodes to their high-energy states.¹¹

Important assessment criteria cover energy and power density, cycle life, Coulombic efficiency, and safety.¹² Electrochemical storage devices are broadly divided into batteries, which store energy through bulk redox reactions, and supercapacitors, which store charge either via electrostatic double layers or fast surface electrochemical reactions.¹³

The selection and engineering of electrode and electrolyte materials dictate performance. Nanostructuring, doping, hybridization, and interface modification are now integral to optimizing conductivity, stability, and ion transport properties.⁸

2.1. Essential Performance Metrics

The suitability of electrochemical storage device for a given application is determined by several metrics such as^{14,15,16}

- Energy density (Wh kg^{-1}) described as the energy stored per unit mass or volume
- Power density (W kg^{-1}) refers to the speed at which stored energy is supplied.
- Cycle life refers to the number of charge–discharge cycles a device can sustain before its capacity declines markedly. (typically to 80% of initial capacity).
- Coulombic efficiency refers to the proportion of charge released during discharge relative to the charge stored during charging, indicating reversibility.
- Safety and stability which are nothing but the ability to operate without hazardous degradation or thermal runaway.

2.2. Classification of Electrochemical Energy Storage Devices

Electrochemical systems are broadly classified into batteries and electrochemical capacitors¹⁷

2.2.1. Batteries

Batteries store energy through bulk electrochemical reactions involving electron transfer and ion migration within electrode materials.¹⁸ They can be:

- a) Intercalation-based systems (e.g., Li-ion batteries), where ions are reversibly inserted into host lattice structures.¹⁹
- b) Conversion-based systems (e.g., Li–S, Li–O₂ batteries), where complete bond breaking and reformation occur, offering higher theoretical capacities.²⁰

2.2.2. Electrochemical capacitors (supercapacitors)

Supercapacitors²¹ store charge via either

- a) Electric double layer capacitance (EDLC) which involves charge accumulation at the electrode/electrolyte interface
- b) Pseudo-capacitance includes fast, surface confined redox reactions that contribute to the higher capacitance than EDLCs.

2.3 Role of Materials Chemistry

The choice and design of electrode and electrolyte materials dictate device performance.²² Key considerations include electronic and ionic conductivity (ensures efficient charge transport), structural stability (maintains electrode integrity during repeated cycling), surface area and porosity (influence ion accessibility and reaction kinetics), and electrochemical potential window (determines energy density and compatibility with the electrolyte).

Advanced material engineering approaches such as nanostructuring, doping, hybridization, and interface modification are now integral to achieving high-performance energy storage. As an example, nanostructured electrodes can dramatically shorten ion diffusion pathways and increase reaction kinetics, while tailored surface chemistries can suppress side reactions and improve stability.²³

2.4. Electrochemical Reactions and Thermodynamics

The cell voltage is determined by the difference in electrochemical potentials between the cathode and anode. The stored energy (E) can be expressed as²⁴:

$$E = \int_{q_{min}}^{q_{max}} V(q). dq$$

where q represents state of charge and V(q) represents operating voltage as a function of charge state.

For intercalation-type systems, voltage remains relatively constant over a wide range of q , whereas conversion systems often exhibit sloping discharge curves due to multi-step reactions.

3. Material Chemistry for Energy Storage

Performance metrics of electrochemical energy storage systems is fundamentally governed by chemical composition, structure, and morphology of their constituent materials. From electrodes to electrolytes, each component must be engineered to deliver the desired combination of high capacity, fast kinetics, long cycle life, and operational safety.²⁵ Materials chemistry provides the tools to tailor these properties at the atomic, molecular, and mesoscale levels, enabling significant performance gains over conventional systems.²⁶

3.1 Key Components and Their Roles

1. Electrode Materials which consist of anode, cathode and current collectors. Anode acts as the host for cations (e.g., Li^+ , Na^+ , K^+) during charging and releases them during discharging. Desirable properties include high specific capacity, excellent electronic conductivity, and minimal volume change during cycling. Cathode provides the oxidizing environment for the working ion. Cathode performance is linked to redox potential, ion diffusion pathways, and structural stability under repeated intercalation or conversion. Current collectors are typically made from metals such as copper (anode) and aluminium (cathode) to provide low resistance pathways for electron flow.²⁷
2. Electrolytes serve as the ionic conductor while preventing electronic conduction between electrodes. They can be liquid, polymer, or solid-state. Electrolyte stability defines the operational voltage window and thus the achievable energy density. Interfacial chemistry among electrolyte-electrode often dictates long-term durability of device.²⁸
3. Separators which physically separates anode and cathode to avoid short circuits while permitting ion transport. Advanced separators can be functionalized to improve wettability, thermal stability, and safety.²⁹

3.2. Classes of Electrode Materials

Electrode materials can be broadly categorized based on their electrochemical reaction mechanisms.³⁰ These includes:

- a) Intercalation-Type Materials, in which ions are reversibly inserted into a host lattice without significant structural change. Examples include Graphite (372 mAh g^{-1}) as anode and Layered LiCoO_2 , spinel LiMn_2O_4 as cathode. Advantages include long cycle life and high reversibility whereas moderate capacities due to limited ion-hosting sites is the limitation.³¹
- b) Conversion-Type Materials which involve full bond breaking and reformation during lithiation/delithiation, enabling multiple electron transfers per formula unit. Example includes metal oxides (Fe_2O_3 , Co_3O_4), sulfides (MoS_2), and nitrides. The material has the advantage of high

theoretical capacities whereas large volume changes and poor cycling stability unless nanostructured or composites are the limitation.³²

- c) Alloy-type materials form alloys with lithium or other cations during charge/discharge (e.g., Si, Ge, Sn). Silicon has an exceptional capacity ($\sim 4200 \text{ mAh g}^{-1}$) but undergoes $\sim 400\%$ volume expansion, causing mechanical degradation. Therefore, strategies such as nanoparticle synthesis, core–shell structures, and elastic binders help mitigate mechanical stress.³³
- d) Nanostructured and Hybrid Materials where nanostructuring has emerged as one of the most effective strategies in modern electrode design. Key benefits include shortened ion/electron diffusion paths (accelerates charge/discharge), high surface area (increases electrochemically active sites), and better strain accommodation (mitigates mechanical degradation during cycling). Hybrid materials combine the strengths of multiple material types, such as carbon–metal oxide composites, to enhance conductivity and stability. For example: Carbon nanotube (CNT) scaffolds integrated with LiFePO₄ cathodes provide continuous electron pathways and shortened Li-ion diffusion lengths. Graphene–metal oxide hybrids improve both conductivity and capacity.³⁴

3.3 Role of Electrolyte and Interface Chemistry

While electrodes store and release charge, the electrolyte's interaction with the electrode surface is critical for stability and safety. Solid Electrolyte Interphase (SEI) layers on anodes can protect from further electrolyte decomposition but must remain ionically conductive. For high-voltage cathodes, electrolyte oxidation can be mitigated by coatings (e.g., Al₂O₃, LiNbO₃) or electrolyte additives.³⁵

3.4 Materials Challenges

Despite significant progress, several material-related challenges³⁶ persist:

a) Capacity Fade

A major issue is the gradual decline in capacity during repeated charge–discharge cycles. For instance, graphite anodes retain $\sim 90\text{--}95\%$ of their initial capacity after 1000 cycles, while silicon anodes, despite their high theoretical capacity ($\sim 4200 \text{ mAh g}^{-1}$), often lose $> 50\%$ capacity within 100 cycles due to volumetric expansion of up to 300%. Such structural degradation and side reactions with the electrolyte highlight the need for stable architectures and protective coatings.³⁷

b) Low Initial Coulombic Efficiency (ICE)

Nanostructured materials, though beneficial for kinetics, typically suffer from low ICE. Silicon nanowires, for example, can exhibit an initial Coulombic efficiency of only $\sim 70\%$, meaning nearly one-third of lithium is irreversibly consumed in forming the SEI layer. In contrast, commercial graphite anodes show ICE values above 90%, which is essential for practical applications. Methods such as prelithiation and electrolyte additives e.g., fluoroethylene carbonate are being developed to mitigate this issue.³⁸

c) Scalability of Synthesis

Many high-performance nanomaterials are produced using costly or complex laboratory-scale techniques. For instance, template-assisted synthesis of hollow nanostructures requires multiple steps, making scale-up difficult. However, case studies show progress such as

- **Spray-drying**, used in the ceramics industry, has been applied to produce spherical cathode powders (e.g., NMC, LFP) at the multi-ton scale with controlled morphology.
- **Sol-gel synthesis** has been scaled for cathodes like LiFePO₄, yielding uniform particle size distribution and commercial production exceeding several thousand tons annually in China.
- **Electrodeposition methods** have also been adapted for large-scale production of porous foams (e.g., Cu or Ni foams), which are now commercially available as current collectors. These examples demonstrate that while some nano synthesis methods remain impractical, others show real potential for industrial translation.

d) Sustainability and Cost of Raw Materials:

Critical elements such as cobalt and nickel drive up cost and raise environmental concerns. Cobalt, for instance, accounts for up to 30% of the raw material cost of lithium-ion batteries, with global production concentrated in the Democratic Republic of Congo. Substitution strategies, such as high-nickel NMC (Ni > 80%) or cobalt-free cathodes (e.g., LiFePO₄), have significantly reduced reliance on cobalt while maintaining performance. Today, LiFePO₄-based batteries already dominate >40% of the Chinese EV market due to their cost-effectiveness, long cycle life (>3000 cycles), and safety profile.³⁹

4. Next-Generation Materials for Electrochemical Energy Storage

The progress of energy storage technologies is closely linked to the creation of advanced materials that surpass the constraints of conventional electrodes and electrolytes. Such materials exhibit tailored compositions, morphologies, and interfaces that enable high capacity, fast kinetics, long-term stability, and safety under demanding operating conditions. This section highlights key categories of advanced materials and their roles in next-generation batteries and supercapacitors.⁴⁰

4.1 Nanostructured Materials

Nanostructuring has revolutionized electrode design by enabling short ion diffusion pathways accelerating charge/discharge. Larger surface area enabling more active sites for redox processes, coupled with superior mechanical stability that limits structural damage from volume variations.⁴¹ Example includes

- Si nanowires and nanotubes grown on current collectors facilitate rapid electron transport and accommodate large volumetric expansion in Li-ion batteries.
- Hollow nanostructures provide internal voids to buffer expansion in high-capacity conversion/alloy anodes.

- Nanoporous carbons enhances electric double-layer capacitance in supercapacitors.

4.2 Two-Dimensional (2D) Materials

The rise of 2D materials has brought new potential in electrochemical storage owing to their ultrathin profiles and unique surface properties. For example, Graphene has exceptional conductivity and mechanical strength, effective as both active material and conductive scaffold. Mxenes (e.g., Ti_3C_2Tx) possesses hydrophilic surfaces, tunable terminations, and metallic conductivity enable rapid ion transport in supercapacitors and hybrid devices. MoS_2 & other layered TMDs also offer large interlayer spacing for ion intercalation and high theoretical capacities. Hybrid 2D structures, such as graphene– MoS_2 composites, combine high capacity with enhanced conductivity and stability.⁴²

4.3. Metal–Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs)

MOFs are porous crystalline materials with tunable metal nodes and organic linkers, enabling high surface areas and customizable pore sizes whereas COFs entirely organic frameworks with ordered porosity and light-element composition, suitable for high-capacity organic electrodes. These frameworks can serve as templates for nanoporous carbons or metal oxide derivatives after pyrolysis, offering high surface area and tailored nanostructures.⁴³

4.4 Bimetallic and Doped Materials

Bimetallic systems leverage synergistic effects between two metals, leading to enhanced electronic conductivity, optimized binding energies for ions or reaction intermediates, and improved structural stability. Example includes Ni–Co oxides/hydroxides (High pseudo-capacitance and redox activity), Cu–Sb, Cu–Sn, and Cu–Bi alloys (deliver high capacity in alloy-type anodes and can be tuned for structural integrity), doping (e.g., N-doped carbons, heteroatom-doped metal oxides) improves conductivity, wettability, and electrochemical activity.⁴⁴

4.5. Composite and Hybrid Architectures

Combining different classes of materials can integrate multiple beneficial properties such as Carbon–metal oxide composites which merge high conductivity with high theoretical capacity.⁴⁵

- Core–shell structures protect active materials from degradation while maintaining high reactivity.
- Hierarchical architectures facilitate multi-level porosity (micro-, meso-, macro-) enhances electrolyte accessibility and ion transport.

A notable example is the incorporation of CNT/graphene conductive networks into $LiFePO_4$ cathodes, which shortens electron pathways and improves rate capability.

4.6. Solid-State and Gel Polymer Electrolytes

Advanced electrolytes are critical for safety and performance⁴⁶:

- **Solid electrolytes** (ceramic or polymer-based) eliminate flammable liquids and allow the use of Li or Na metal anodes.
- **Gel polymer electrolytes** integrate the inherent safety of solids with the adaptability of liquids, improving electrode–electrolyte contact.

The development of high-conductivity, wide-electrochemical-window solid electrolytes remains a key frontier.

4.7 Multifunctional Materials and Cross-Disciplinary Applications

Notably, many advanced materials for energy storage also exhibit properties suitable for electrocatalysis (e.g., CO₂ reduction, oxygen reduction). For example: bimetallic catalysts (Cu–Sb, Cu–Bi) not only store charge but also catalyse CO₂ electroreduction efficiently. Mxene-based composites can act as both high-rate battery electrodes and conductive supports for catalytic reactions. These multifunctional properties point toward future integrated systems where a unified platform enables both energy storage and conversion.⁴⁷

5. Energy Storage Devices and Architectures

Advanced materials can only realize their full potential when integrated into carefully designed device architectures. These architectures determine how efficiently electrons and ions move, how effectively volume changes are accommodated, and how well the device maintains stability over repeated cycles. This section outlines the core types of electrochemical energy storage devices, their working principles, and how advanced materials improve their performance.⁴⁸

5.1. Lithium-Ion Batteries (LIBs)

LIBs operate via the reversible intercalation-deintercalation of lithium ions (Li⁺) shuttling between the anode (commonly graphite) and the cathode (e.g., layered LiCoO₂). A non-aqueous liquid electrolyte ensures ion conduction while preventing electronic contact between electrodes. LIBs consist of a cathode made up of substitutional doping and nanoscale coatings (e.g., Al₂O₃, ZrO₂) improve cycle life and high-voltage stability whereas anode which are silicon nanostructures and carbon composites increase capacity and rate capability. Electrolytes used are advanced liquid, gel, or solid electrolytes which expand the operating voltage window and improve safety.⁴⁹

5.2 Sodium-Ion and Potassium-Ion Batteries

As earth-abundant and inexpensive elements, sodium and potassium serve as viable alternatives to lithium. Despite the reduced energy density caused by heavier ions compared to LIBs, such systems present advantages in terms of economics and resource availability. The batteries composed of a cathode which is layered Na_xMO₂ (M = transition metals), Prussian blue analogues with open frameworks for fast ion transport. An anode hard carbons with tunable porosity, high-capacity alloy materials, exemplified by Sn and Sb.⁵⁰

5.3 Lithium–Sulfur (Li–S) Batteries

It offers very elevated theoretical capacity and energy density enabled by multi-electron redox chemistry of sulfur. Challenges include polysulfide shuttling, low conductivity, and volume expansion, which can be addressed with nanostructured carbon–sulfur composites and functional separators.⁵¹

5.4 Lithium–Oxygen (Li–O₂) Batteries

It delivers extremely high theoretical energy density, potentially exceeding LIBs. They rely on oxygen reduction/evolution reactions but face challenges such as insulating discharge products (Li₂O₂), poor reversibility, and short cycle life. Research focuses on catalytic electrodes and stable electrolytes.⁷

5.5 Supercapacitors

Supercapacitors or electrochemical capacitors, store energy through these main mechanisms:

- Electric Double-Layer Capacitors (EDLCs) store energy through electrostatic ion separation at the electrode–electrolyte interface. Materials include nanoporous carbons, graphene, and carbon nanotubes, which provide high surface areas and excellent cycling stability.
- In pseudo-capacitors, charge storage arises from rapid and reversible redox processes occurring at the electrode surface, delivering higher capacitance than EDLCs. Materials include MnO₂, NiCo₂O₄, polyaniline, polypyrrole, and mxenes.
- By coupling an EDLC-like electrode with a battery-type electrode, hybrid supercapacitors deliver a balance of energy and power density, narrowing the gap between batteries and standard supercapacitors.

Advantages include extremely extended cycle life ($>10^5$ cycles), elevated power output, fast charge/discharge capability, and superior reliability but its energy density is lower than that of batteries. Supercapacitors are progressively used in regenerative braking, power backup, and flexible/wearable electronics, where high power and durability are critical.⁵²

5.6 Solid-State Battery Architectures

Solid-state batteries (SSBs) represent a breakthrough in energy storage, utilizing solid electrolytes instead of flammable liquids to improve safety and support lithium metal anodes with very high specific capacity. Solid electrolytes, including ceramics like garnet-type Li₇La₃Zr₂O₁₂ and NASICON structures, polymers like PEO–Li salt complexes, and hybrid polymer–ceramic systems, provide ionic conduction while improving stability. High-voltage oxides and sulfur-based cathodes are also being developed to maximize energy density. Although they offer high energy density, improved safety, and extended cycle life, SSBs face challenges such as interfacial resistance, dendrite growth, mechanical mismatch, and manufacturing complexity. Ongoing research in materials chemistry and interface engineering is addressing these limitations, positioning SSBs as a leading candidate for emerging electric vehicles and utility-scale energy storage.^{53, 54}

5.7 Emerging and Hybrid Systems

New and hybrid systems are being developed to combine the **high energy density of batteries** with the **high-power density and cycle life of supercapacitors**, offering tailored solutions for diverse applications.

a) Dual-Ion Batteries (DIBs):

Unlike conventional lithium-ion batteries, which rely on cation intercalation, DIBs store both **cations at the anode and anions at the cathode** during charge and discharge. Graphite is commonly used as the cathode, enabling high-voltage operation (often >4.5 V) and potentially lower material costs since no transition-metal oxides are required. However, they face electrolyte stability issues at high voltages, which limit long-term cycling. For instance, graphite-based DIBs can achieve **energy densities of 150–200 Wh kg⁻¹**, but typically retain only **~70% capacity after 200–300 cycles**, highlighting the need for more stable electrolytes.⁵⁵

b) Metal-Ion Capacitors (MICs):

MICs are hybrid devices that pair a **battery-type anode** (such as hard carbon, $\text{Li}_4\text{Ti}_5\text{O}_{12}$, or metal oxides) with a **capacitor-type cathode** (typically activated carbon). This design provides both high energy density and high-power capability. For example, **lithium-ion capacitors (LICs)** can deliver **energy densities of 70–100 Wh kg⁻¹** while maintaining **power densities up to 10 kW kg⁻¹**, outperforming conventional supercapacitors. Similarly, **sodium-ion capacitors (SICs)** are emerging as cost-effective alternatives for grid storage, though challenges include electrode matching and sluggish kinetics of larger Na^+ ions.⁵⁵

c) Redox Flow Batteries (RFBs):

These systems store energy in external liquid electrolytes that circulate through electrochemical cells, offering scalability for stationary storage. Vanadium redox flow batteries (VRFBs) dominate the field, with demonstrated **>10,000 cycle life** and the ability to decouple energy (tank size) from power (cell stack size). However, low energy density ($\sim 20\text{--}50 \text{ Wh L}^{-1}$) and high electrolyte cost remain major barriers. Research is ongoing into **organic redox couples** and **zinc-based flow systems** to reduce cost and environmental concerns.⁵⁶

d) Flexible and Structural Batteries:

Designed for multifunctional integration, flexible and structural batteries aim to combine energy storage with mechanical or wearable functionalities. Flexible lithium-ion batteries using polymer electrolytes and thin-film electrodes are being explored for wearable electronics, while **structural batteries**, which integrate electrodes into load-bearing components, can reduce overall system weight in electric vehicles and drones. For example, carbon-fiber composites infused with lithium-ion active materials have shown **energy densities of $\sim 30 \text{ Wh kg}^{-1}$** while retaining mechanical strength.

Although these systems still face **limitations in energy density, electrolyte stability, and integration**, they highlight the growing trend toward **application-specific energy storage technologies**. By leveraging the complementary strengths of batteries and capacitors, emerging and hybrid systems are expected to play a crucial role in bridging performance gaps in future energy infrastructure.⁵⁷

New and hybrid systems seek to integrate the high energy of batteries with the high power and extended cycle life of supercapacitors. Dual-ion batteries enable high-voltage operation but face electrolyte stability issues, while metal-ion capacitors balance energy and power through mixed electrode designs. Redox flow batteries offer scalable solutions for grid storage, though cost and efficiency remain challenges. Flexible and structural batteries are also being developed for wearables and transport applications. Although these technologies still face limitations in energy density and integration, they represent promising pathways for application-specific energy storage.

6. Material Design Strategies

The rapid evolution of electrochemical energy storage technologies has been fueled by the development of innovative materials design strategies that address key performance limitations such as low capacity, poor rate capability, structural degradation, and safety issues. These strategies aim to manipulate materials at multiple length scales from atomic-level composition to bulk architecture to optimize electrochemical performance.

6.1. Nanostructuring

Nanoscale structuring of materials shortens ion and electron pathways, increases electrode–electrolyte contact, and accommodates volume changes during cycling. Silicon nanowires, hollow nanostructures, and nanoporous carbons exemplify this approach, enhancing conductivity, ion accessibility, and mechanical stability. Such designs improve rate capability and cycling durability but their high surface area often promotes side reactions, lowering initial Coulombic efficiency.⁹

6.2. Surface Engineering

Modifying the surface chemistry of active materials such as thin coatings, functional groups, and artificial interphases can enhance electrochemical kinetics, suppress unwanted reactions, and improve stability. These modifications improve electrolyte wettability, enhance interfacial stability, and extend device lifetime, notably applied to high-voltage cathodes and lithium metal anodes.⁸

6.3. Doping and Alloying

Incorporating heteroatoms or secondary metals into a host material can modulate its electronic structure, enhance conductivity, and alter ion diffusion kinetics. N- or S-doped carbons enhance conductivity, while cation substitution in layered oxides stabilizes cathodes. Bimetallic alloys such as Cu–Sb or Ni–Co improve both capacity and durability.⁵⁸

6.4. Hybridization and Composite Formation

Combining materials integrates complementary properties. Graphene–metal oxide composites, mxene–polymer hybrids, and core–shell architectures improve conductivity, flexibility, and structural integrity, yielding higher energy and power performance.⁵⁹

6.5. Morphology Control

Structuring materials into 1D, 2D, or 3D architectures optimizes porosity, packing density, and mechanical robustness. Techniques such as template synthesis, self-assembly, and aerogel formation create hierarchical frameworks with efficient ion transport.⁶⁰

6.6. Interface Engineering

Tailoring electrode–electrolyte interfaces reduce resistance and parasitic reactions. Coatings, gradient structures, and interfacial catalysts improve charge transfer, suppress dendrite growth, and stabilize high-voltage or conversion systems.

These strategies are not mutually exclusive, combinatorial approaches often yield the best results. For example, a hollow nanostructured cathode can be doped with heteroatoms, coated with a protective oxide layer, and incorporated into a conductive carbon scaffold, yielding simultaneous improvements in energy density, rate capability, and cycle life.⁶¹

7. Challenges and Perspectives

Despite the remarkable progress in materials chemistry for electrochemical energy storage, several critical challenges remain before these technologies can fully meet the demands of next-generation applications. These challenges span scientific, engineering, economic, and environmental dimensions.⁶²

7.1. Scientific and Technical Challenges

7.1.1 Capacity Fade and Degradation Mechanisms

- **Volume Changes:** Large volume changes in materials such as Si and Sn during charge–discharge cycles result in particle breakage and loss of electrical connectivity
- **Structural Instability:** Repeated ion insertion/extraction can cause phase transitions, lattice distortion, and eventual breakdown of crystalline frameworks.
- **Electrolyte Decomposition:** Side reactions at high voltages or low potentials degrade both the electrolyte and electrode surfaces.

7.1.2 Safety Concerns

- **Thermal Runaway:** In high-energy-density Li-ion batteries, the risk increases when separators fail or short circuits develop.

- **Dendrite Formation:** Lithium metal anodes suffer from dendritic growth, causing short circuits and capacity loss.
- **Flammable Electrolytes:** Organic solvents pose fire hazards under abusive conditions.

7.1.3 Rate Capability Limitations

- Slow ion/electron transport in bulk materials limits high-power performance.
- High-surface-area nanomaterials improve kinetics but may increase parasitic reactions, lowering Coulombic efficiency.

7.2. Scalability and Manufacturing

- **Complex Synthesis Routes:** Many advanced nanostructures require multi-step, high-cost, or low-yield fabrication methods unsuitable for mass production.
- **Batch-to-Batch Variability:** Inconsistent morphology or composition during scale-up can lead to unreliable performance.
- **Integration with Current Infrastructure:** New materials must be compatible with existing manufacturing lines to minimize transition costs.

7.3. Sustainability and Resource Availability

- **Critical Raw Materials:** Dependence on scarce or geopolitically sensitive elements (e.g., Co, Ni) raises supply risks and environmental concerns.
- **Recycling and End-of-Life Management:** Current recycling technologies are inefficient for recovering high-purity active materials from spent batteries.
- **Green Synthesis:** The environmental footprint of producing nanomaterials and advanced composites must be reduced by adopting eco-friendly solvents, precursors, and energy-efficient processes.

7.4. Economic Viability

- **Cost–Performance Trade-Off:** High-performance materials (e.g., graphene, MXenes) often remain prohibitively expensive for large-scale deployment.
- **Lifetime Cost Analysis:** Long-term stability and recyclability must be factored into the total cost of ownership.

7.5. Future Perspectives

To overcome these barriers, future research should focus on:

1. Designing of multifunctional materials-based electrodes that integrate high energy density, fast kinetics, and catalytic activity for dual roles in storage and conversion.

2. Development of sustainable material sourcing which utilizes abundant elements such as Fe, Mn, Na, and organic redox-active compounds.
3. Interface-Centric Design which tailors the electrode–electrolyte interface for stability, dendrite suppression, and high-voltage tolerance.
4. Advanced manufacturing utilizes high-throughput techniques including spray-drying, roll-to-roll coating, and 3D printing to fabricate nanostructured electrodes at industrial scale.
5. Solid-State Systems which develop high-conductivity, wide-window solid electrolytes to enable safe lithium-metal batteries.
6. Recyclable and Reusable Architectures which enables engineering materials and device structures for easy disassembly and recovery of valuable components.

Ultimately, the convergence of materials innovation, process engineering, and systems integration will be essential for translating laboratory breakthroughs into commercially viable solutions. As John B. Goodenough noted, the future of sustainable energy storage lies in not just discovering new materials, but also in understanding their fundamental chemistry well enough to make them practical at scale.⁶³

8. Emerging Applications of Electrochemical Energy Storage Systems

The advances in materials chemistry for electrochemical energy storage has enabled diverse applications across different sectors. Covering domains from consumer gadgets to grid-level storage solutions, the choice of device architecture and materials directly determines the performance, cost, and longevity of these applications.

8.1 Portable Electronics

Portable electronics including smartphones, laptops, tablets, and wearables demand energy storage systems that are high in energy density, lightweight, compact, and long-lasting.. Lithium-ion batteries, particularly those employing layered oxide cathodes (LiCoO₂, NMC) and graphite or silicon-based anodes, dominate this sector due to their superior performance. Advances such as surface coatings, doping strategies, and nanostructured carbons have further enhanced voltage stability, fast-charging capability, and durability. In addition, flexible supercapacitors based on mxene–conductive polymer composites are emerging as promising candidates for bendable displays and smart textiles.⁶⁴

8.2 Electric Vehicles (EVs)

Electric vehicles demand high energy density for long driving range, high power density for rapid acceleration, fast charging, long cycle life, and stringent safety standards. Current systems rely on high-Ni layered oxide cathodes (NCA, NMC811) paired with Si–graphite composite anodes to boost capacity, while solid-state electrolytes are being developed to replace flammable liquids and enable lithium metal anodes. Nanostructured Ni–Co oxides and hybrid capacitors are also explored for efficient regenerative

braking. These advancements enable diverse applications, spanning passenger EVs, buses, two-wheelers, and hybrid electric vehicles.⁶⁵

8.3 Grid-Scale Energy Storage

Grid-scale energy storage requires low cost per kWh, long calendar life of 10–20 years, high safety, minimal maintenance, and scalability to MWh–GWh levels. Promising solutions include Na-ion batteries with abundant-element cathodes such as Prussian blue analogues and layered Na_xMO_2 , as well as redox flow batteries using vanadium, iron–chromium, or organic redox couples that offer virtually unlimited scalability. Hybrid supercapacitors are also employed for peak-load leveling thanks to their high-power density. These technologies enable renewable energy integration in solar and wind farms, while supporting frequency regulation and load shifting in modern power grids.²⁶

8.4 Aerospace and Defence

Aerospace and defence systems demand high energy-to-weight ratios, reliable performance across wide temperature ranges, and long-term stability under extreme conditions. Advanced solutions include high-voltage lithium-rich layered cathodes incorporating protective coatings to resist degradation, solid-state batteries for improved safety and low-temperature operation, and lightweight structural batteries that can be integrated directly into aircraft or drone frames to maximize energy efficiency.⁶⁶

8.5 Flexible and Wearable Devices

Flexible and wearable electronics require lightweight, mechanically flexible energy storage systems that remain stable under bending, stretching, or twisting. Promising approaches include 2D materials such as mxenes and graphene combined with conductive polymers for flexible supercapacitors, as well as stretchable gel polymer electrolytes with ionic liquids for safe operation. These technologies power emerging applications like smart clothing, biomedical sensors, and rollable displays.⁶⁷

8.6 Emerging Multifunctional Systems

The increasing integration of energy storage and conversion has highlighted multifunctional materials for their dual-role capabilities. Examples include bimetallic catalysts such as Cu–Sb and Cu–Bi, which act as both high-capacity battery electrodes and efficient electrocatalysts for CO_2 reduction, as well as mxene-supported catalysts that combine storage, sensing, and catalytic functions on a single platform.⁶⁸ Such multifunctional systems hold promise for self-powered sensors and off-grid renewable setups, where energy can be harvested, stored, and utilized in situ.⁶⁹

9. Conclusion

Central to the transition to sustainable energy, electrochemical energy storage enables the integration of renewables, the electrification of transport, and advances in portable and flexible electronic devices. The development of advanced materials, including nanostructured carbons, 2D materials, MOFs/COFs, bimetallic alloys, and hybrid composites, has significantly enhanced the performance of batteries,

supercapacitors, and emerging solid-state systems. Through materials chemistry, strategies such as nanostructuring, doping, surface engineering, hybridization, and interface design have addressed key limitations in capacity, rate capability, and stability. However, challenges remain in achieving scalability, sustainability, safety, and cost-effectiveness. Future progress will rely on a deep understanding of structure–property relationships, application of abundant, non-toxic elements, scalable manufacturing processes, and interdisciplinary collaboration. Rather than a single breakthrough material, the future will be defined by synergistic combinations of materials and architectures tailored to specific applications, ultimately enabling safe, high-performance, and affordable energy storage solutions for a carbon-neutral future.

Acknowledgement

The author gratefully acknowledges the financial support provided by the DST-SERB project. The facilities and infrastructure offered by the Department of Chemistry, Savitribai Phule Pune University, are also deeply appreciated. Special thanks are due to Prof. Santosh K. Haram for his invaluable guidance, insightful suggestions, and constant encouragement throughout the course of this work.

References

1. Rolison DR, Nazar LF. Electrochemical energy storage to power the 21st century. *MRS Bulletin*. 2011;36(7):486-493. doi:10.1557/mrs.2011.136
2. Ebhota WS, Jen TC. Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast Tracking Hybrid Renewable Energy System. *International Journal of Precision Engineering and Manufacturing - Green Technology*. 2020;7(1):97-117. doi:10.1007/s40684-019-00101-9
3. Gür TM. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. *Energy and Environmental Science*. 2018;11(10):2696-2767. doi:10.1039/c8ee01419a
4. Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. *Materials Today*. 2014;17(3):110-121. doi:10.1016/j.mattod.2014.02.014
5. Beér JM. High efficiency electric power generation: The environmental role. *Progress in Energy and Combustion Science*. 2007;33(2):107-134. doi:10.1016/j.pecs.2006.08.002
6. Xu J, Cai X, Cai S, et al. High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications. *Energy and Environmental Materials*. 2023;6(5):1-26. doi:10.1002/eem2.12450
7. Kwak WJ, Rosy N, Sharon D, et al. Lithium-Oxygen Batteries and Related Systems: Potential,

- Status, and Future. *Chemical Reviews*. 2020;120(14):6626-6683. doi:10.1021/acs.chemrev.9b00609
8. Li L, Liu W, Dong H, et al. Surface and Interface Engineering of Nanoarrays toward Advanced Electrodes and Electrochemical Energy Storage Devices. *Advanced Materials*. 2021;33(13):1-21. doi:10.1002/adma.202004959
 9. Guo Y, Hu J, Wan L. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. *Advanced Materials*. 2008;20(15):2878-2887. doi:10.1002/adma.200800627
 10. Noel Buckley D, O'Dwyer C, Quill N, Lynch RP. Electrochemical Energy Storage. *Issues in Environmental Science and Technology*. 2019;2019-Janua(46):115-149. doi:10.1039/9781788015530-00115
 11. Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? *Chemical Reviews*. 2004;104(10):4245-4269. doi:10.1021/cr020730k
 12. Xiao J, Li Q, Bi Y, et al. Understanding and applying coulombic efficiency in lithium metal batteries. *Nature Energy*. 2020;5(8):561-568. doi:10.1038/s41560-020-0648-z
 13. Sagadevan S, Marlinda AR, Chowdhury ZZ, et al. *Fundamental Electrochemical Energy Storage Systems*. INC; 2020. doi:10.1016/B978-0-12-819897-1.00001-X
 14. Islam MS, Mubarak M, Lee HJ. Hybrid Nanostructured Materials as Electrodes in Energy Storage Devices. *Inorganics*. 2023;11(5):1-21. doi:10.3390/inorganics11050183
 15. Mathis TS, Kurra N, Wang X, Pinto D, Simon P, Gogotsi Y. Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. *Advanced Energy Materials*. 2019;9(39):1-13. doi:10.1002/aenm.201902007
 16. Mai L, Tian X, Xu X, Chang L, Xu L. Nanowire electrodes for electrochemical energy storage devices. *Chemical Reviews*. 2014;114(23):11828-11862. doi:10.1021/cr500177a
 17. Abruña HD, Kiya Y, Henderson JC. Batteries and electrochemical capacitors. *Physics Today*. 2008;61(12):43-47. doi:10.1063/1.3047681
 18. Schmidt-Rohr K. How Batteries Store and Release Energy: Explaining Basic Electrochemistry. *Journal of Chemical Education*. 2018;95(10):1801-1810. doi:10.1021/acs.jchemed.8b00479
 19. Cabana J, Monconduit L, Larcher D, Palacín MR. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. *Advanced Materials*. 2010;22(35):170-192. doi:10.1002/adma.201000717
 20. Li Y, Khurram A, Gallant BM. A High-Capacity Lithium-Gas Battery Based on Sulfur Fluoride Conversion. *Journal of Physical Chemistry C*. 2018;122(13):7128-7138. doi:10.1021/acs.jpcc.8b00569

21. Conway BE, Pell WG. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. *Journal of Solid State Electrochemistry*. 2003;7(9):637-644. doi:10.1007/s10008-003-0395-7
22. Wang F, Wu X, Yuan X, et al. Latest advances in supercapacitors: From new electrode materials to novel device designs. *Chemical Society Reviews*. 2017;46(22):6816-6854. doi:10.1039/c7cs00205j
23. Wang KX, Li XH, Chen JS. Surface and interface engineering of electrode materials for lithium-ion batteries. *Advanced Materials*. 2015;27(3):527-545. doi:10.1002/adma.201402962
24. Chen GZ. Supercapacitor and supercapattery as emerging electrochemical energy stores. *International Materials Reviews*. 2017;62(4):173-202. doi:10.1080/09506608.2016.1240914
25. Chen K, Xue D. Materials chemistry toward electrochemical energy storage. *Journal of Materials Chemistry A*. 2016;4(20):7522-7537. doi:10.1039/c6ta01527a
26. Liu J, Zhang JG, Yang Z, et al. Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid. *Advanced Functional Materials*. 2013;23(8):929-946. doi:10.1002/adfm.201200690
27. Yamada M, Watanabe T, Gunji T, Wu J, Matsumoto F. Review of the Design of Current Collectors for Improving the Battery Performance in Lithium-Ion and Post-Lithium-Ion Batteries. *Electrochem*. 2020;1(2):124-159. doi:10.3390/electrochem1020011
28. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. *Chemical Society Reviews*. 2015;44(21):7484-7539. doi:10.1039/c5cs00303b
29. Song Y, Sheng L, Wang L, Xu H, He X. From separator to membrane: Separators can function more in lithium ion batteries. *Electrochemistry Communications*. 2021;124:106948. doi:10.1016/j.elecom.2021.106948
30. Gabriel E, Ma C, Graff K, Conrado A, Hou D, Xiong H. Heterostructure engineering in electrode materials for sodium-ion batteries: Recent progress and perspectives. *eScience*. 2023;3(5):100139. doi:10.1016/j.esci.2023.100139
31. Panchu SJ, Raju K, Swart HC. Emerging Two-Dimensional Intercalation Pseudocapacitive Electrodes for Supercapacitors. *ChemElectroChem*. 2024;11(15). doi:10.1002/celc.202300810
32. Wang H, Chen S, Fu C, et al. Recent Advances in Conversion-Type Electrode Materials for Post Lithium-Ion Batteries. *ACS Materials Letters*. 2021;3(7):956-977. doi:10.1021/acsmaterialslett.1c00043
33. Luo G, Feng X, Qian M, et al. State-of-art progress and perspectives on alloy-type anode materials for potassium-ion batteries. *Materials Chemistry Frontiers*. 2023;7(15):3011-3036.

doi:10.1039/d3qm00031a

34. Yu G, Xie X, Pan L, Bao Z, Cui Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. *Nano Energy*. 2013;2(2):213-234. doi:10.1016/j.nanoen.2012.10.006
35. Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R. Electrolytes and Electrolyte/Electrode Interfaces in Sodium-Ion Batteries: From Scientific Research to Practical Application. *Advanced Materials*. 2019;31(21):1-41. doi:10.1002/adma.201808393
36. Rojaee R, Shahbazian-Yassar R. Two-Dimensional Materials to Address the Lithium Battery Challenges. *ACS Nano*. 2020;14(3):2628-2658. doi:10.1021/acsnano.9b08396
37. Ning G, Haran B, Popov BN. Capacity fade study of lithium-ion batteries cycled at high discharge rates. *Journal of Power Sources*. 2003;117(1-2):160-169. doi:10.1016/S0378-7753(03)00029-6
38. Tang Z, Zhou S, Huang Y, et al. Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na-Ion Batteries: Origins, Solutions, and Perspectives. *Electrochemical Energy Reviews*. 2023;6(1):1-29. doi:10.1007/s41918-022-00178-y
39. Alexandros K. UNIVERSITY OF THESSALY DEPARTMENT OF MECHANICAL ENGINEERING LiFePO 4 BATTERIES : NEW MATERIALS , FAILURES AND RECYCLING Diploma Thesis by : Published online 2025:1-98.
40. Liu C, Li F, Lai-Peng M, Cheng HM. Advanced materials for energy storage. *Advanced Materials*. 2010;22(8):28-62. doi:10.1002/adma.200903328
41. Manthiram A, Vadivel Murugan A, Sarkar A, Muraliganth T. Nanostructured electrode materials for electrochemical energy storage and conversion. *Energy and Environmental Science*. 2008;1(6):621-638. doi:10.1039/b811802g
42. Yun Q, Li L, Hu Z, Lu Q, Chen B, Zhang H. Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage. *Advanced Materials*. 2020;32(1):1-29. doi:10.1002/adma.201903826
43. Gao X, Dong Y, Li S, Zhou J, Wang L, Wang B. *MOFs and COFs for Batteries and Supercapacitors*. Vol 3. Springer Singapore; 2020. doi:10.1007/s41918-019-00055-1
44. Sanati S, Abazari R, Albero J, et al. Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. *Angewandte Chemie - International Edition*. 2021;60(20):11048-11067. doi:10.1002/anie.202010093
45. Reddy ALM, Gowda SR, Shaijumon MM, Ajayan PM. Hybrid nanostructures for energy storage applications. *Advanced Materials*. 2012;24(37):5045-5064. doi:10.1002/adma.201104502
46. Cheng X, Pan J, Zhao Y, Liao M, Peng H. Gel Polymer Electrolytes for Electrochemical Energy Storage. *Advanced Energy Materials*. 2018;8(7):1-16. doi:10.1002/aenm.201702184

47. Manohar A, Suvarna T, Vattikuti SVP, et al. Multifunctional g-C₃N₄/Ni_xMg_{1-x}Fe₂O₄ nanocomposites: Advanced materials for electrochemical energy storage and biocompatibility. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*. 2025;715(March):136618. doi:10.1016/j.colsurfa.2025.136618
48. Vlad A, Singh N, Galande C, Ajayan PM. Design Considerations for Unconventional Electrochemical Energy Storage Architectures. *Advanced Energy Materials*. 2015;5(19):1-53. doi:10.1002/aenm.201402115
49. Kundu D, Talaie E, Duffort V, Nazar LF. The emerging chemistry of sodium ion batteries for electrochemical energy storage. *Angewandte Chemie - International Edition*. 2015;54(11):3432-3448. doi:10.1002/anie.201410376
50. Gao Y, Yu Q, Yang H, Zhang J, Wang W. The Enormous Potential of Sodium/Potassium-Ion Batteries as the Mainstream Energy Storage Technology for Large-Scale Commercial Applications. *Advanced Materials*. 2024;36(39):1-25. doi:10.1002/adma.202405989
51. Yin YX, Xin S, Guo YG, Wan LJ. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. *Angewandte Chemie - International Edition*. 2013;52(50):13186-13200. doi:10.1002/anie.201304762
52. Yu L, Zheng G. Supercapattaries as High - Performance Electrochemical Energy Storage Devices. *Electrochemical Energy Reviews*. 2020;3(2):271-285. doi:10.1007/s41918-020-00063-6
53. Augustyn V, McDowell MT, Vojvodic A. Toward an Atomistic Understanding of Solid-State Electrochemical Interfaces for Energy Storage. *Joule*. 2018;2(11):2189-2193. doi:10.1016/j.joule.2018.10.014
54. Joshi A, Mishra DK, Singh R, Zhang J, Ding Y. A comprehensive review of solid-state batteries. *Applied Energy*. 2025;386(January):125546. doi:10.1016/j.apenergy.2025.125546
55. Qiu X, Liu H, Duan Y, et al. Designing High-Performance Dual-Ion Batteries: Insights into Electrode, Electrolyte, and Interface Engineering. *Advanced Energy Materials*. 2025;15(26):1-22. doi:10.1002/aenm.202501016
56. Ramachandran T, Khan R, Ghosh A, et al. Sustainable carbon electrode materials from biomass for redox flow batteries. *Biomass and Bioenergy*. 2025;198(January):107846. doi:10.1016/j.biombioe.2025.107846
57. Liu Z, Li X, Bao Y. Mechanics of Flexible Lithium-Ion Batteries: Structural Design and Characterization. *Acta Mechanica Solida Sinica*. 2025;38(3):369-383. doi:10.1007/s10338-024-00567-4
58. Shan S, Luo J, Wu J, et al. Nanoalloy catalysts for electrochemical energy conversion and storage reactions. *RSC Advances*. 2014;4(80):42654-42669. doi:10.1039/c4ra05943c

59. Zhang H, Gu C, Yao MS, Kitagawa S. Hybridization of Emerging Crystalline Porous Materials: Synthesis Dimensionality and Electrochemical Energy Storage Application. *Advanced Energy Materials*. 2022;12(4):1-21. doi:10.1002/aenm.202100321
60. Kong D, Luo J, Wang Y, et al. Three-dimensional Co₃O₄@MnO₂ hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage. *Advanced Functional Materials*. 2014;24(24):3815-3826. doi:10.1002/adfm.201304206
61. Hui J, Gossage ZT, Sarbapalli D, Hernández-Burgos K, Rodríguez-López J. Advanced Electrochemical Analysis for Energy Storage Interfaces. *Analytical Chemistry*. 2019;91(1):60-83. doi:10.1021/acs.analchem.8b05115
62. Zhang SS. Status, opportunities, and challenges of electrochemical energy storage. *Frontiers in Energy Research*. 2013;1(DEC):1-6. doi:10.3389/fenrg.2013.00008
63. Goodenough JB. Electrochemical energy storage in a sustainable modern society. *Energy and Environmental Science*. 2014;7(1):14-18. doi:10.1039/c3ee42613k
64. Wang J. Portable electrochemical systems. *TrAC - Trends in Analytical Chemistry*. 2002;21(4):226-232. doi:10.1016/S0165-9936(02)00402-8
65. Zhang Q, Dong QF, Zheng MS, Tian ZW. Electrochemical Energy Storage Device for Electric Vehicles. *Journal of The Electrochemical Society*. 2011;158(5):A443. doi:10.1149/1.3556586
66. Edwards E, Brantley C, Ruffin PB. Over of Nanotechnology in Military and Aerospace Applications. *Nanotechnology Commercialization: Manufacturing Processes and Products*. Published online 2017:133-176. doi:10.1002/9781119371762.ch5
67. Kim J, Kumar R, Bandodkar AJ, Wang J. Advanced Materials for Printed Wearable Electrochemical Devices: A Review. *Advanced Electronic Materials*. 2017;3(1):1-15. doi:10.1002/aelm.201600260
68. Ali R, Islam M, Shafi M, Ali S, Wang HE. Developments and prospects of MXenes for energy storage and environmental sustainability. *Coordination Chemistry Reviews*. 2025;540(May):216797. doi:10.1016/j.ccr.2025.216797
69. Cai G, Wang J, Lee PS. Next-Generation Multifunctional Electrochromic Devices. *Accounts of Chemical Research*. 2016;49(8):1469-1476. doi:10.1021/acs.accounts.6b00183